所以,方程式应该修改为:
K为各个层,平均竞争人数。
G=KF+kTN
790=20F+9k
6300≈10F+25k
≤3F+81k
≈41k?无解吧?!
≈≈≈≈≈≈≈≈≈
算啦,取消“K”实际竞争人数参数,也就是说,任何层次,进入人多了,也不会额外增大负荷喽?!
嗯!是的!因为,在这本书里认为,练气塔的位置容量,明显是充足的。
那么,G=F+kTN
790=F+9k
6300=F+25k
≤F+81k
这个方程式,合适么??
实际上我们可以发现,左侧的数值,大致按照“8”倍递增,那么,我们需要让右侧,也是“8”倍递增才可以跟得上。
所以,首先,楼层数肯定是系数之一,随着楼层越往下,基础的负荷都会大大增大,然后就是随着时间增大,负荷增加的速度更大。同时恢复人数竞争数K。
要不,把系数变成指数?
假设斗师八星在第一层可以待1天,大斗师八星可以在第五层待3天,斗灵八星可以在第九层待9天。
也就是:G=NKF+kT2?
790=1×20×F+k×1×2
6300≈5×10×F+k×3×32
≤9×5×F+k×9×512
总结起来就是:
790≈20F+2k
6300≈50F+96k
≤45F+4608k
4300≈91k?还是不合适。
因为,左侧的数值递增,大致是8倍递增。而右侧的指数倍数,是45倍!
【本章告一段落,虽然各种尝试,依旧未能推论出一个合适的参数设置。
下一个章节,继续!】